Fundamentals of Matrix Computations

Pirmais vāks
John Wiley & Sons, 2004. gada 27. aug. - 640 lappuses
A significantly revised and improved introduction to a critical aspect of scientific computation
Matrix computations lie at the heart of most scientific computational tasks. For any scientist or engineer doing large-scale simulations, an understanding of the topic is essential. Fundamentals of Matrix Computations, Second Edition explains matrix computations and the accompanying theory clearly and in detail, along with useful insights.
This Second Edition of a popular text has now been revised and improved to appeal to the needs of practicing scientists and graduate and advanced undergraduate students. New to this edition is the use of MATLAB for many of the exercises and examples, although the Fortran exercises in the First Edition have been kept for those who want to use them. This new edition includes:
* Numerous examples and exercises on applications including electrical circuits, elasticity (mass-spring systems), and simple partial differential equations
* Early introduction of the singular value decomposition
* A new chapter on iterative methods, including the powerful preconditioned conjugate-gradient method for solving symmetric, positive definite systems
* An introduction to new methods for solving large, sparse eigenvalue problems including the popular implicitly-restarted Arnoldi and Jacobi-Davidson methods
With in-depth discussions of such other topics as modern componentwise error analysis, reorthogonalization, and rank-one updates of the QR decomposition, Fundamentals of Matrix Computations, Second Edition will prove to be a versatile companion to novice and practicing mathematicians who seek mastery of matrix computation.

No grāmatas satura

Saturs

1 Gaussian Elimination and Its Variants
1
2 Sensitivity of Linear Systems
111
3 The Least Squares Problem
181
4 The Singular Value Decomposition
261
5 Eigenvalues and Eigenvectors I
289
6 Eigenvalues and Eigenvectors II
413
7 Iterative Methods for Linear Systems
521
Some Sources of Software for Matrix Computations
603
References
605
Index
611
Index of MATLAB Terms
617
Autortiesības

Citi izdevumi - Skatīt visu

Bieži izmantoti vārdi un frāzes

Populāri fragmenti

530. lappuse - One can easily see that if 5 is symmetric, then it is positive definite if and only if all of its eigenvalues are positive.
305. lappuse - A is an eigenvalue of A if and only if it is a solution of det (AI - A) = 0.
290. lappuse - ... SELF-INDUCTION. The magnetic field associated with an electric current cuts the conductor carrying the current. When the current changes, so does the magnetic field, resulting in an induced EMF (See induction, electromagnetic.) This phenomenon is called self-induction. The induced EMF is proportional to the rate of change of the current, the constant of proportionality being called the coefficient of self-induction, or the self-inductance.
193. lappuse - A (not necessarily square) produces an orthonormal matrix Q and an upper triangular matrix R such that A — QR.
209. lappuse - 01101 00010 00000 is in the row-reduced echelon form, but the matrix "0 0 0" 1 1 0 ^0 0 1 is not. The column reduced echelon form can be defined in an analogous way. It follows readily from the definition that the rank of a matrix is equal to the number of nonzero rows in its row-reduced echelon form. Example 36. Reduce the following matrix in the row-reduced echelon form: "2 4 -2 2 12-30 36-43 Solution.
213. lappuse - Recall that the rank of a matrix is the number of linearly independent columns or rows in that matrix.
340. lappuse - A is unitarily similar to a diagonal matrix if and only if it is normal.
6. lappuse - C is the dot product of the ith row of A with the jth column of B.
79. lappuse - Standard Gaussian elimination is equivalent to factoring the matrix A as A — LU, where L is lower triangular and U is upper triangular. In actual computations, these factors are explicitly constructed. The main problem in sparse matrix computations is that the factors of A are often a good deal less sparse than A, which makes solving expensive.

Atsauces uz šo grāmatu

Par autoru (2004)

DAVID S. WATKINS, PhD, is Professor of Mathematics at Washington State University.

Bibliogrāfiskā informācija