Lapas attēli
PDF
ePub

We shall review enough of the salient facts in the story to show that the board's conclusion is supported by evidence.

In the spring of 1951, Eclipse-Pioneer Division of Bendix Aviation Corporation (hereinafter called Bendix) approached Apex to develop a light-weight, glass-fiber, pressure vessel which was needed as a part for their jet engine starter project. The head of the Research and Engineering Department of Apex assigned the problem to Wiltshire who had been working with molded fiber glass and resin tubs for washing machines. By June of 1951 Wiltshire had definite thoughts as to how the pressure vessel should be made. It would have to have an "inner thin shell of aluminum to seal against air leakage through the fiber glass laminate" and the "shell will be in the form of winding the continuous glass rovings" which will "supply the strength against bursting." Certain government specifications regarding bursting pressures, working pressures and resistance to shattering were contemplated, as was the problem of constructing a winding machine and completion of the vessels for September delivery. Wiltshire, however, easily completed a small-scale, handoperated device with which he wound string upon a wooden croquet ball by rotating the sphere while feeding the string by hand along the axis of rotation. Going on from the small, crude, hand-operated device, Wiltshire next built the so-called 1/2-size machine. It was much more refined and, instead of feeding the string to be wound by hand, it used an oscillating winding arm whose motion was automatically controlled by a barrel cam, the latter causing the winding arm to oscillate from pole to pole in step with rotation of the sphere. The 12-size machine also varied the length of the traverse stroke automatically by means of a cam, the shape of which had been determined by experimenting with the earlier machine.

About the time the 1/2-size machine was being developed, Mr. Scott, an Apex salesman who was dealing with Bendix, offered to deliver the fiber glass wound spheres to Bendix provided they would not have to guarantee that the rigid specifications would be met, as Apex was not equipped to perform all the necessary tests. Bendix ordered six tanks. Wiltshire designed and built the full-size winding machine, with which he wound some sixteen spherical pressure vessels on metal liners. Those metal-lined spheres, designated M-1 through M-16, were wound during the period November 1, 1951 to February 20, 1952. While they varied somewhat as to the type of resin impregnation and the method of curing, all the original 16 spheres were wound in substantially the same manner. Numerous working and bursting pressure tests, as well as other destructive tests, as, for example, those to determine the glass content, were performed either at

Wright-Patterson Air Force Base, at the Case Institute of Technology in Cleveland, or at Teterboro, New Jersey, by Bendix. In February, 1952, Dr. Nara of the Case Institute pressure tested tank No. 13 until it burst at 6800 p.s.i. and cycle tested tank No. 14 by initially loading it to 5000 p.s.i. and then recharging it 25 times at 3000 p.s.i. Tank No. 14 was "o.k." after this testing and was shipped to Teterboro on February 15, 1952. A Bendix report dated March 19, 1952, indicates that "tank (c)," later shown to be tank M-14 which was tested by Dr. Nara, "Passed the proof pressure test but failed after approximately 30 cycles during cycling tests." It was this vessel, M-14, which Bendix had at a meeting with Daley on March 24, 1952, whereat disclosure to Daley is alleged to have been made. The requirement of gunfire resistance remained and we will now review the evidence directed to the gunfire test.

One of the original 16 spherical vessels, M-3, was subjected to a gunfire test at the Wright Air Development Center, Wright-Patterson Air Force Base in Dayton, Ohio, and the results of those tests were recorded by several parties independently. An Air Force "Memorandum Report," entitled "Informal Gunfire Test of Apex Fiberglass Storage Tank" and dated 8 February 1952, is of record. It says:

B. FACTUAL DATA:

*

3. On 21 November 1951 a fiberglass wound storage tank supplied by Apex Electric Manufacturing Company was filled with compressed air at 3000 psi. A 50 caliber armor piercing bullet was then tumbled into it. The bullet entered at 90° and left at 45° from the vertical axis of the sphere. (See Exhibits A and B). The entry was a slit approximately 11⁄4 inches long and 4 inch wide. The exit was elliptical with the axis being approximately 2 inches by 21⁄2 inches. There was no evidence of fragmentation.

C. CONCLUSIONS:

4. None, data merely submitted.

D. RECOMMENDATIONS:

5. A complete gunfire test should be run on this type of high pressure storage vessel since it has wide applications in aircraft.

Several photographs of the vessel accompany the report. Wiltshire was also in Dayton for the gunfire test and an unsigned report, dated November 24, 1951, which Wiltshire testified he had written, after briefly setting forth the testing procedure, says:

The Tank took the shot with no tearing of any kind. The Tank weighed 16# 1 oz. before test and the same after the test.

All persons concerned stated that they had never seen a Tank that did not tear when fired as above.

An Apex "Progress Report," dated November, 1951, is directed to the various tests that had been performed on the four tanks that had been made as of that date and as respects resistance to gunfire says, "The gun fire test on one tank shows that no tearing or shattering takes place." Additional photographs of the vessel are of record. Furthermore, after the gunfire tests, M-3 was cut up for inspection and the parts of it are Wiltshire's physical Exhibits A-1, A–2 and A-3. Wiltshire also testified that gunfire tests at Wright Field were set up by Bendix personnel. One of the Bendix personnel at the gunfire test was C. D. Flanigen, a senoir project engineer, who was the person who "pulled the trigger on the gun" and was also one of the Bendix personnel at the March 24, 1952 meeting which Daley attended.

During February of 1952, Bendix specifications were changed, including a requirement that the tanks withstand 10,000 cycles of pressurization, a requirement which Apex's metal-lined vessels apparently could not meet, as evidenced by Dr. Nara's cycle testing of M−14. Apex, therefore, decided to develop a rubber inner liner which would be wound with glass fibers. However, Bendix had to meet delivery schedules for the starters and since they had previously used Kidde pressure vessels, either wire-wound cylinders or spheres which were not wire wound, in development testing of the entire air system, Bendix requested Kidde to supply the needed vessels.

On March 24, 1952, at Teterboro, four engineers from Bendix met with Horace Daley and John Stock of Kidde. Stock was a "contract engineer" but not an engineer by education. It is his report which has been a principal but not the only source of information as to what was disclosed at that meeting. This report is entitled "ECLIPSE PIONEER FIBER GLASS CONTAINERS ENGINE STARTER PROJECT." It says that he was following up on work originally started by Mr. Hall in supplying 875 cu. inch spheres which were solid-walled, non-wire wound spheres and it pointed out that "Eclipse is working with our steel bottles as well as with fiber glass bottles from another source **" It also says:

The meeting was generally devoted to exchange back and forth of experience on fiber glass and steel containers

I don't know whether this is news or not however, Eclipse fiber glass bottles are being made by an outfit in Cleveland by name of Apex who they said got into the fiber glass business through using it for washing machine tubs, etc. Eclipse are apparently doing the designing and Apex only the manufacturing. Another note of interest is that Eclipse stated that the fiber glass bottles that they had obtained to date did not stand up under cyclings-the inner steel shell ruptured. They showed us one as we were leaving, which I believe was one of the ones that had failed on cycling (although, it looked perfectly okay

on the outside) and if I remember correctly it had failed after 39 cycles. By contrast, they had cycled one of our steel bottles for 2,000 cycles satisfactorily. [Emphasis ours.]

**

When Stock was called as a witness for Daley he could not remember the details of the meeting. When asked "Did it have a metal liner?" he answered, "I don't know." When his attention was called to the statement in his report that "the inner steel shell ruptured" he responded, "I made notes of the conversation *** and one of the Eclipse people present must have stated those words exactly and I recorded them." He also answered "I don't know" to the two questions "What did Bendix tell you about fiber glass containers?" and "Did they tell you anything about how they were constructed?" On the other hand, he testified that the sphere which they were shown at the meeting looked "like an over-sized golf ball without a cover on it" but he couldn't recall, at the time he testified, how the windings appeared.

Daley testified that the "sum total" of the "exchange back and forth of experience on fiber glass" was a "discussion *** on the subject of fiber glass * * * test results and to the effect that the testing on fiber glass was quite unsatisfactory to that date and that basically their problem was in the endurance life of the containers which was completely inadequate." He remembered being shown a container as stated in the Stock report and he testified that he recalled it as being the "equivalent of our 875 cubic inch steel sphere." He also testified that he "understood" it had a "metal liner of some sort that had caused failures" but that he couldn't see the liner because "You could only see the outside." He didn't remember "how closely we were actually to the sphere" and he didn't believe that "at a distance" you could tell whether it had been molded or wound but he said, "I must say in all fairness that I knew from being somewhat conversant with the subject that winding had been used in order to obtain any reasonable strength properties in fiber glass."

Of the four Bendix engineers who were present William J. Deitz, Jr., and C. D. Flanigen testified. They were called as rebuttal witnesses for Wiltshire. Deitz was assigned by Bendix to work on combustion starters at the plant at Teterboro during 1951 and 1952. He testified as to the contents of numerous Bendix progress reports which related to the starter project generally, including summary data on pressure vessels. These reports were written prior to the March 24th meeting, during the regular course of business at Bendix and copies were received by him. He was also somewhat acquainted with Kidde's spheres which Bendix had used. He was questioned specifically about discussion at the meeting but he couldn't recall the specific meeting as he had attended several with Kidde representatives.

Mr. C. D. Flanigen, a senior project engineer for Bendix during 1951 and 1952, was also present at the meeting and testified that the meeting with Kidde was to obtain air tanks that were necessary to meet their $20 million starter project. Kidde had been contacted since they apparently were in a position to supply heavier, 29 to 34 pound, pressure tanks. He testified that prior to the meeting, Kidde had been told that fifty bottles were needed for early delivery but made it clear that Bendix preferred an 18-pound vessel, presumably Apex's, that still had a lot of bugs in it, and that therefore Kidde would probably only be needed to supply the fifty vessels and no more. These are the reasons why Bendix showed Kidde the Apex vessel at the March 24th meeting which Flanigen summarized when he said:

we made no bones about showing the fiber glass bottles to Kidde so they could judge for themselves as to how rough it would be for them to beat the competition in the long range future.

Referring to what Daley and Talarico did right after the March meeting, the board said:

there is no convincing proof that they did anything about reinforcing with a winding a spherical vessel, until immediately after said meeting of March 24, 1952. Then, they became extremely active. According to Daley's testimony before the end of March of 1952 they had “a jury rig type of machine for winding spheres."

We think the foregoing and other evidence adequately support the board's conclusion as to the originality issue against the charge that it is manifestly wrong. The board stated its final conclusions as follows:

It appears to us, that the positive as well as the circumstantial evidence make a prima facie case that, interpreting the term "outer shell' to be satisfied by the Daley et al. winding, Wiltshire was the original and first inventor of the subject matter of the count and that Daley et al. derived it from him. The burden, then, was upon the senior party Daley et al. to proceed with the evidence to rebut this prima facie case made by the junior party. ** [citing authority]. The senior party has failed to rebut it. Daley et al. have not shown that they were in possession of the invention before the Wiltshire container was disclosed to them. In fact the date claimed by them for conception, both in their preliminary statement and in their brief is more than a month after the date of said meeting.

We believe that Wiltshire is entitled to prevail on this prima facie case of derivation of the invention by the senior party from him, and all other issues raised by the parties become moot.

The decision of the board awarding priority to Wiltshire is affirmed. KIRKPATRICK, J., did not participate in decision.

« iepriekšējāTurpināt »