Polytopes - Combinations and Computation

Pirmais vāks
Gil Kalai, Günter M. Ziegler
Birkhäuser, 2012. gada 6. dec. - 225 lappuses
Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.
 

Lietotāju komentāri - Rakstīt atsauksmi

Ierastajās vietās neesam atraduši nevienu atsauksmi.

Saturs

Eugenij Gawrilow Michael Joswig
43
Gil Kalai Peter Kleinschmidt Günter Meisinger
74
Andrea Höppner Günter M Ziegler
105
Benno Bieler Andreas Enge Komei Fukuda
131
Hans Achatz Peter Kleinschmidt
155
David Avis
177
Sven G Bartels
199
Autortiesības

Citi izdevumi - Skatīt visu

Bieži izmantoti vārdi un frāzes

Bibliogrāfiskā informācija