Lapas attēli
PDF
ePub

preventing unauthorized changes. The recorder may be combined with the steam controller and may be a recording-controlling instrument. The temperature-recorder bulb shall be installed either within the steam dome or in a well attached to the dome. Each temperature-recorder bulb well shall have a 16-inch or larger bleeder opening which emits steam continuously during the processing period. Additional temperature-recorder bulbs shall be installed in the hydrostatic water legs if the scheduled process specified maintenance of particular temperatures in the hydrostatic water legs. Air-operated temperature controllers should have adequate filter systems to ensure a supply of clean dry air.

(3) Pressure gages. Each retort should be equipped with a pressure gage which should be graduated in divisions of 2 pounds or less.

(4) Recording of temperatures. Temperatures indicated by the mercury-inglass thermometer or thermometers shall be entered on a suitable form during processing operations. Temperatures shall be recorded by an accurate automatic recorder or recorders at the following points:

(i) In the steam chamber between the steam-water interface and the lowest container position.

(ii) Near the top and the bottom of each hydrostatic water leg if the scheduled process specifies maintenance of particular temperatures in the legs.

(5) Steam controller. Each retort shall be equipped with an automatic steam controller to maintain the retort temperature. This may be a recording-controlling instrument when combined with a recording thermometer. A steam controller activated by the steam pressure of the retort is acceptable if it is carefully mechanically maintained so that it operates satisfactorily.

(6) Venting. Before the start of processing operations, the retort steam chamber or chambers shall be vented to ensure removal of air.

(7) Bleeders. Bleeder openings 4inch or larger shall be located at the top of the steam chamber or chambers opposite the point of steam entry.

Bleeders shall be wide open and shall emit steam continuously during the entire process, including the come-uptime. All bleeders shall be arranged in such a way that the operator can observe that they are functioning properly.

(8) Retort speed. The speed of the container-conveyor chain shall be specified in the scheduled process and shall be determined and recorded at the start of processing and at intervals of sufficient frequency to ensure that the retort speed is maintained as specified. The speed should be determined and recorded every 4 hours. An automatic device should be used to stop the chain when the temperature drops below that specified in the scheduled process. A means of preventing unauthorized speed changes shall be provided. A lock, or a notice from management posted at or near the speedadjusting device that provides a warning that only authorized persons are permitted to make adjustments, is a satisfactory means of preventing unauthorized changes.

(9) Critical factors. Critical factors specified in the scheduled process shall be measured and recorded on the processing record at intervals of sufficient frequency to ensure that the factors are within the limits specified in the scheduled process.

(i) When maximum fill-in or drained weight is specified in the scheduled process, it shall be measured and recorded at intervals of sufficient frequency to ensure that the weight of the product does not exceed the maximum for the given container size specified in the scheduled process.

(ii) Closing machine vacuum in vacuum-packed products shall be observed and recorded at intervals of sufficient frequency to ensure that the vacuum is as specified in the scheduled process.

(iii) Such measurements and recordings should be made at intervals not to exceed 15 minutes.

(g) Aseptic processing and packaging systems-(1) Product sterilizer-(i) Equipment—(a) Temperature-indicating device. Each product sterilizer shall be equipped with at least one mercury-in-glass thermometer or an equivalent temperature-indicating

device, such as a thermocouple-recorder. Mercury-in-glass thermometers shall have divisions that are easily readable to 1° F and whose temperature range does not exceed 17° F per inch of graduated scale. Thermometers and temperature-indicating devices shall be tested for accuracy against a known accurate standard thermometer upon installation and at least once a year thereafter, or more frequently if necessary, to ensure their accuracy. Records of accuracy checks which specify date, standard used, method used, and person performing the test should be maintained. Each thermometer and temperature-indicating device should have a tag, seal, or other means of identity that includes the date on which it was last tested for accuracy. A thermometer that has a divided mercury column or that cannot be adjusted to essential agreement with the standard shall be repaired or replaced. Thermometers and temperature-indicating devices shall be installed where they can be accurately and easily read. The temperature-indicating device shall be the reference instrument for indicating the processing temperature.

(b) Temperature-recording device. There shall be an accurate temperature recording device on each product sterilizer. The device shall be installed in the product at the holding-tube outlet between the holding tube and the inlet to the cooler. Temperaturerecording devices shall have graduations that do not exceed 2° F within a range of 10° F of the processing temperature. Each chart shall have a working scale of not more than 55° F per inch within a range of 20° F of the desired product-sterilization temperature.

The temperature chart shall be adjusted to agree as nearly as possible with, but to be in no event higher than, a known accurate mercury-inglass thermometer. A means of preventing unauthorized changes in adjustment shall be provided. A lock; or a notice from management posted at or near the recording device that provides a warning that only authorized persons are permitted to make adjustments, is a satisfactory means for preventing unauthorized changes.

(c) Temperature recorder-controller. An accurate temperature recorder-controller shall be located in the product sterilizer at the final heater outlet. It shall be capable of ensuring that the desired product sterilization temperature is maintained. The chart graduations shall not exceed 2° F within a range of 10° F of the desired product sterilization temperature. Air-operated temperature controllers should have adequate filter systems to ensure a supply of clean, dry air.

(d) Product-to-product regenerators. When a product-to-product regenerator is used to heat the cold unsterilized product entering the sterilizer by means of a heat exchange system, it shall be designed, operated, and controlled so that the pressure of the sterilized product in the regenerator is greater than the pressure of any unsterilized product in the regenerator to ensure that any leakage in the regenerator is from the sterilized product into the unsterilized product.

(e) Differential pressure recordercontroller. When a product-to-product regenerator is used, there shall be an accurate differential pressure recorder-controller installed on the regenerator. The scale divisions shall not exceed 2 pounds per square inch on the working scale of not more than 20 pounds per square inch per inch. The controller shall be tested for accuracy against a known accurate standard pressure indicator upon installation and at least once every 3 months of operation thereafter, or more frequently if necessary, to ensure its accuracy. One pressure sensor shall be installed at the sterilized product regenerator outlet and the other pressure sensor shall be installed at the unsterilized product regenerator inlet.

Metering pump. A metering pump shall be located upstream from the holding tube and shall be operated to maintain the required rate of product flow. A means of preventing unauthorized speed changes shall be provided. A lock, or a notice from management posted at or near the speed-adjusting device that provides a warning that only authorized persons are permitted to make adjustments, is a satisfactory means of preventing unauthorized changes.

(g) Product holding tube. The product-sterilizing holding tube shall be designed to give continous holding of every particle of food for at least the minimum holding time specified in the scheduled process. The holding tube shall be designed so that no portion of the tube between the product inlet and the product outlet can be heated, and it must be sloped upward at least 0.25 inch per foot.

(h) Flow-diversion systems. If a processor elects to install a flow-diversion system, it should be installed in the product piping located between the product cooler and the product filler or aseptic surge tank and should be designed to divert flow away from the filler or aseptic surge tank automatically. Controls and/or warning systems should be designed and installed with necessary sensors and actuators to operate whenever the sterilizing temperature in the holding tube or pressure differential in the product regenerator drops below specified limits. Flow-diversion systems should be designed and operated in accordance with recommendations of an aseptic processing and packaging authority.

(i) Equipment downstream from the holding tube. Product coolers, aseptic surge tanks, or any other equipment downstream from the holding tube, with rotating or reciprocating shafts, valve stems, instrument connections, or other such points, are subject to potential entry of microorganisms into the product. Such locations in the system should be equipped with steam seals or other effective barriers at the potential access points. Appropriate means should be provided to permit the operator to monitor the performance of the seals or barriers during operations.

(ii) Operation-(a) Startup. Before the start of aseptic processing operations the product sterilizer and all product-contact surfaces downstream shall be brought to a condition of commercial sterility.

(b) Temperature drop in productsterilizing holding tube. When product temperature in the holding tube drops below the temperature specified in the scheduled process, product flow should be diverted away from the filler or aseptic surge tank by means of a flow-diversion system. If for any

reason product subjected to a temperature drop below the scheduled process is filled into containers, the product shall be segregated from product that received the scheduled process. The processing deviation shall be handled in accordance with § 113.89. The product holding tube and any further system portions affected shall be returned to a condition of commercial sterility before product flow is resumed to the filler or to the aseptic surge tank.

(c) Loss of proper pressures in the regenerator. When a regenerator is used, the product may lose sterility whenever the pressure of sterilized product in the regenerator is less than 1 pound per square inch greater than the pressure of unsterilized product in the regenerator. In this case, product flow should be diverted away from the filler or aseptic surge tank by means of the flow-diversion system. If for any reason the product is filled into containers, the product shall be segregated from product that received the scheduled process and shall be reprocessed or destroyed. Product flow to the filler or to the aseptic surge tank shall not be resumed until the cause of the improper pressure relationships in the regenerator has been corrected and the affected system(s) has been returned to a condition of commercial sterility.

(d) Loss of sterile air pressure or other protection level in the aseptic surge tank. When an aseptic surge tank is used, conditions of commercial sterility may be lost when the sterile air overpressure or other means of protection drops below the scheduled process value. Product flow to and/or from the aseptic surge tank shall not be resumed until the potentially contaminated product in the tank is removed, and the aseptic surgc tank has been returned to a condition of commercial sterility.

(e) Records. Readings at the following points shall be observed and recorded at the start of aseptic packaging operations and at intervals of sufficient frequency to ensure that these values are as specified in the scheduled process: Temperature-indicating device in holding tube outlet; temperature recorder in holding tube outlet;

temperature

recorder-controller at final heater outlet; differential pressure recorder-controller, if a productto-product regenerator is used; product flow rate as established by the metering pump or as determined by filling and closing rates and, if an aseptic surge tank is used, sterile air pressure or other protection means; and proper performance of seam seals or other similar devices. The measurements and recordings should be made at intervals not to exceed 1 hour.

(2) Container sterilizing, filling, and closing operation—(i) Equipment—(a) Recording device. The container and closure sterilization system and product filling and closing system shall be instrumented to demonstrate that the required sterilization is being accomplished continuously. Automatic recording devices shall be used to record, when applicable, the sterilization media flow rates, temperature, concentration, or other factors. When a batch system is used for container sterilization, the sterilization conditions shall be recorded.

(b) Timing method(s). A method(s) shall be used either to give the retention time of containers, and closures if applicable, in the sterilizing environment specified in the scheduled process, or to control the sterilization cycle at the rate specified in the scheduled process. A means of preventing unauthorized speed changes must be provided. A lock, or a notice from management posted at or near the speed adjusting device that provides a warning that only authorized persons are permitted to make adjustments, is a satisfactory means of preventing unauthorized changes.

(ii) Operation-(a) Startup. Before the start of packaging operations, both the container and closure sterilizing system and the product filling and closing system shall be brought to a condition of commercial sterility.

(b) Loss of sterility. A system shall be provided to stop packaging operations, or alternatively to ensure segregation of any product packaged when the packaging conditions fall below scheduled processes. Compliance with this requirement may be accomplished by diverting product away

from the filler, by preventing containers from entering the filler, or by other suitable means. In the event product is packaged under conditions below those specified in the scheduled process, all such product shall be segregated and handled in accordance with 113.89. In the event of loss of sterility, the system(s) shall be returned to a condition of commercial sterility before resuming packaging operations.

(c) Records. Observations and measurements of operating conditions shall be made and recorded at intervals of sufficient frequency to ensure that commercial sterility of the food product is being achieved; such measurements shall include the sterilization media flow rates, temperatures, the container and closure rates (if applicable) through the sterilizing system, and the sterilization conditions if a batch system is used for container sterilization. The measurements and recordings should be made at intervals not to exceed 1 hour.

tests

(3) Incubation. Incubation should be conducted on a representative sample of containers of product from each code; records of the test results should be maintained.

(4) Critical factors. Critical factors specified in the scheduled process shall be measured and recorded on the processing record at intervals of sufficient frequency to ensure that the factors are within the limits specified in the scheduled process. Such measurements and recordings should be done at intervals not to exceed 15 minutes.

(h) Equipment and procedures for flame sterilizers. The container conveyor speed shall be specified in the scheduled process. The container conveyor speed shall be measured and recorded at the start of operations and at intervals of sufficient frequency to ensure that the conveyor speed is as specified in the scheduled process. Such measurements and recordings should be done at 1-hour intervals. Alternatively, recording tachometer may be used to provide a continuous record of the speed. A means of preventing changes in flame intensity and unauthorized speed changes on the conveyor shall be provided. A lock, or a notice from management posted at or near

the speed adjusting device that provides a warning that only authorized persons are permitted to make adjust ments, is a satisfactory means of preventing unauthorized changes. The surface temperature of at least one container from each conveyor channel shall be measured and recorded at the entry and at the end of the holding period at intervals of sufficient frequency to ensure that the temperatures specified in the scheduled process are maintained. Such measurements and recordings should be done at intervals not to exceed 15 minutes.

(1) Process interruption. In the event of process interruption wherein the temperature of the product may have dropped, an authorized, scheduled emergency plan approved by a qualified person having expert knowledge of the process requirements may be used.

(2) Critical factors. Critical factors specified in the scheduled process shall be measured and recorded on the processing record at intervals of sufficient frequency to ensure that the factors are within the limits specified in the scheduled process.

(i) Equipment and procedures for thermal processing of foods wherein critical factors such as water activity are used in conjunction with thermal processing. The methods and controls used for the manufacture, processing, and packing of such foods shall be as established in the scheduled process and shall be operated or administered in a manner adequate to ensure that the product is safe. The time and temperature of processing and other critical factors specified in the scheduled process shall be measured with instruments having the accuracy and dependability adequate to ensure that the requirements of the scheduled process are met. All measurements shall be made and recorded at intervals of sufficient frequency to ensure that the critical factors are within the limits specified in the scheduled proc

ess.

(j) Other systems. All systems, whether or not specifically mentioned in this part, for the thermal processing of low-acid foods in hermetically sealed containers shall conform to the applicable requirements of this part

and the methods and controls used for the manufacture, processing, and packing of these foods shall be as established in the scheduled process. These systems shall be operated or administered in a manner adequate to ensure that commercial sterility is achieved. Critical factors specified in the scheduled process shall be measured and recorded at intervals of sufficient frequency to ensure that the critical factors are within the limits specified in the scheduled process.

Subpart D—Control of Components, Food Product Containers, Closures, and In-Process Materials

§ 113.60 Containers.

(a) Closures. Regular observations shall be maintained during production runs for gross closure defects. Any such defects shall be recorded and corrective action taken and recorded. At intervals of sufficient frequency to ensure proper closure, the operator, closure supervisor, or other qualified container closure inspection person shall visually examine either the top seam of a can randomly selected from each seaming head or the closure of any other type of container being used and shall record the observations made. For double-seam cans, each can should be examined for cutover or sharpness, skidding or deadheading, false seam, droop at the crossover or lap, and condition of inside of countersink wall for evidence of broken chuck. Such measurements and recordings should be made at intervals not to exceed 30 minutes. Additional visual closure inspections shall be made immediately following a jam in a closing machine, after closing machine adjustment, or after startup of a machine following a prolonged shutdown. All pertinent observations shall be recorded. When irregularities are found, the corrective action shall be recorded.

(1) Teardown examinations for double-seam cans shall be performed by a qualified individual and the results therefrom shall be recorded at intervals of sufficient frequency on enough containers from each seaming station to ensure maintenance of seam

« iepriekšējāTurpināt »